skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arunagiri, Karthik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reducing the cost of hydrogen transport is an important priority for the proliferation of clean hydrogen to decarbonize the economy. It is possible to alleviate the hydrogen transportation costs by delivering them via existing natural gas pipeline infrastructure. This strategy, however, necessitates the dilution of hydrogen by blending it with natural gas as hydrogen embrittlement pipeline materials. In this work, we deploy high-temperature polymer electrolyte membrane electrochemical hydrogen pumps (HT-PEM EHPs) to purify hydrogen from dilute hydrogen–natural gas mixtures (5 to 20 vol % hydrogen). Interestingly, we observe that activation overpotentials govern HT-PEM EHP polarization when feeding dilute hydrogen mixtures. Pressurizing the anode to 1.76 barabs enables us to ameliorate interfacial mass transfer resistance and achieve an EHP limiting current density of 1.4 A cm–2 with a 10 vol % of hydrogen in a natural gas feed. The HT-PEM EHP showed a small degradation rate, 44 μV h–1, during a 100 h durability test. 
    more » « less
  2. This work reveals how electrode binders affect reaction kinetics, ionic conductivity, and gas transport in electrochemical hydrogen pumps (EHPs). Using a blend of phosphonic acid and perfluorosulfonic acid ionomers as the electrode binder, an EHP was operated at 5 A cm−2
    more » « less